Skip to content

Performance Optimization Guide

Comprehensive guide to optimizing the Nerve Framework for maximum performance.

Overview

This guide provides detailed optimization techniques, configuration recommendations, and performance tuning strategies for the Nerve Framework across different deployment scenarios and workloads.

Optimization Philosophy

Performance Principles

/// Core performance optimization principles
pub struct OptimizationPrinciples {
    /// Measure before optimizing
    pub measure_first: bool,
    /// Focus on bottlenecks
    pub focus_on_bottlenecks: bool,
    /// Consider trade-offs
    pub consider_tradeoffs: bool,
    /// Test thoroughly
    pub test_thoroughly: bool,
}

let principles = OptimizationPrinciples {
    measure_first: true,
    focus_on_bottlenecks: true,
    consider_tradeoffs: true,
    test_thoroughly: true,
};

Optimization Hierarchy

graph TB
    A[Algorithm Optimization] --> B[Data Structure Optimization]
    B --> C[Memory Optimization]
    C --> D[Concurrency Optimization]
    D --> E[I/O Optimization]
    E --> F[System Optimization]

Memory Optimization

Memory Pooling

use nerve::memory::pool::MemoryPool;

/// Optimized memory pool configuration
let memory_pool = MemoryPool::new(1024 * 1024 * 100) // 100MB total
    .with_chunk_size(4096)          // 4KB chunks
    .with_max_chunks_per_size(1000) // Limit per size
    .with_reuse_threshold(0.8)      // Reuse at 80%
    .with_compaction(true)          // Enable compaction
    .with_stats_collection(true);   // Collect statistics

// Use pool for message buffers
let buffer = MessageBuffer::new(1000, QoSPolicy::BestEffort)
    .with_memory_pool(memory_pool);

Object Reuse

use nerve::memory::reuse::ObjectPool;

/// Object pool for message reuse
let message_pool = ObjectPool::<Message>::new()
    .with_initial_capacity(1000)
    .with_max_capacity(10000)
    .with_reset_function(|msg| {
        msg.headers.clear();
        msg.payload.clear();
        msg.correlation_id = None;
    });

// Reuse messages instead of creating new ones
let mut message = message_pool.get().await;
message.topic = "optimized_topic".into();
message.payload = b"reused_payload".to_vec();

// Return to pool when done
message_pool.return_object(message).await;

Cache Optimization

use nerve::memory::cache::LruCache;

/// Optimized cache configuration
let cache = LruCache::new(1000) // 1000 entries
    .with_ttl(Duration::from_secs(300)) // 5 minutes
    .with_eviction_policy(EvictionPolicy::Lru)
    .with_metrics(true) // Track hit/miss ratios
    .with_compression(true); // Compress large values

// Cache frequently accessed data
cache.put("routing_table", routing_data).await;
let cached = cache.get("routing_table").await;

Concurrency Optimization

Thread Pool Configuration

use nerve::thread::ThreadPool;
use std::sync::atomic::{AtomicUsize, Ordering};

/// Optimized thread pool configuration
let thread_pool = ThreadPool::new()
    .with_core_threads(num_cpus::get()) // Match CPU cores
    .with_max_threads(num_cpus::get() * 2) // Allow oversubscription
    .with_keep_alive(Duration::from_secs(60)) // Keep threads alive
    .with_queue_size(10000) // Large work queue
    .with_thread_name("nerve-worker") // Descriptive names
    .with_affinity(true) // CPU affinity
    .with_metrics(true); // Performance metrics

// Submit work to optimized pool
thread_pool.submit(|| {
    // CPU-intensive work
    process_message_batch(messages)
}).await?;

Lock-Free Data Structures

use nerve::memory::lockfree::LockFreeQueue;
use crossbeam::epoch;

/// Lock-free queue for high-concurrency scenarios
let queue = LockFreeQueue::new(1000)
    .with_backoff_strategy(BackoffStrategy::Exponential)
    .with_spin_count(1000) // Spin before blocking
    .with_batching(true) // Batch operations
    .with_metrics(true); // Performance tracking

// Concurrent push operations
for i in 0..100 {
    queue.push(Message::new("topic", format!("msg_{}", i))).await?;
}

// Concurrent pop operations
while let Some(message) = queue.pop().await {
    process_message(message).await?;
}

Async Runtime Optimization

use tokio::runtime::Builder;

/// Optimized async runtime configuration
let runtime = Builder::new_multi_thread()
    .worker_threads(num_cpus::get()) // Match CPU cores
    .max_blocking_threads(num_cpus::get() * 2) // Blocking threads
    .thread_name("nerve-async") // Descriptive names
    .thread_stack_size(2 * 1024 * 1024) // 2MB stack
    .enable_all() // Enable all features
    .build()?;

// Use optimized runtime
runtime.spawn(async {
    // Async work
    process_async_messages().await
});

I/O Optimization

Batch I/O Operations

use nerve::io::batcher::IoBatcher;

/// I/O batching for optimization
let io_batcher = IoBatcher::new()
    .with_batch_size(100) // Batch 100 operations
    .with_max_wait_time(Duration::from_millis(10)) // 10ms max wait
    .with_compression(true) // Compress batches
    .with_parallel_processing(true); // Process in parallel

// Batch file operations
io_batcher.batch_write("log_file", log_entries).await?;

// Batch network operations
io_batcher.batch_send(messages).await?;

Buffered I/O

use nerve::io::buffer::BufferedWriter;

/// Buffered writer for I/O optimization
let buffered_writer = BufferedWriter::new(file)
    .with_buffer_size(64 * 1024) // 64KB buffer
    .with_auto_flush(true) // Auto-flush on buffer full
    .with_compression(true) // Compress before writing
    .with_metrics(true); // Track I/O performance

// Write with buffering
buffered_writer.write(&data).await?;
buffered_writer.flush().await?; // Manual flush if needed

Connection Pooling

use nerve::communication::pool::ConnectionPool;

/// Optimized connection pooling
let connection_pool = ConnectionPool::new()
    .with_max_connections(100) // Maximum connections
    .with_idle_timeout(Duration::from_secs(300)) // 5 minutes idle
    .with_connection_timeout(Duration::from_secs(30)) // 30s connect timeout
    .with_health_check_interval(Duration::from_secs(60)) // Health check every minute
    .with_metrics(true); // Connection metrics

// Get connection from pool
let connection = connection_pool.get_connection("endpoint").await?;

// Use connection
connection.send(&data).await?;

// Return to pool
connection_pool.return_connection(connection).await;

Algorithm Optimization

Efficient Data Structures

use nerve::data_structures::optimized::OptimizedHashMap;

/// Optimized hash map for performance
let optimized_map = OptimizedHashMap::new()
    .with_capacity(10000) // Pre-allocate capacity
    .with_load_factor(0.75) // Optimal load factor
    .with_hash_algorithm(HashAlgorithm::XXHash) // Fast hash
    .with_cache_locality(true); // Improve cache hits

// Fast insertions and lookups
optimized_map.insert("key", "value");
let value = optimized_map.get("key");

Streaming Algorithms

use nerve::algorithms::streaming::StreamProcessor;

/// Streaming algorithm for real-time processing
let stream_processor = StreamProcessor::new()
    .with_window_size(1000) // Process in windows
    .with_slide_interval(Duration::from_secs(1)) // Slide every second
    .with_parallel_processing(true) // Parallel window processing
    .with_watermark(Duration::from_secs(5)); // Event time watermark

// Process streaming data
stream_processor.process_stream(|window| {
    // Process window of data
    aggregate_window(window)
}).await?;

Caching Algorithms

use nerve::algorithms::cache::AdaptiveCache;

/// Adaptive cache with automatic tuning
let adaptive_cache = AdaptiveCache::new(1000) // 1000 entries
    .with_adaptive_ttl(true) // Auto-adjust TTL
    .with_prefetch(true) // Prefetch likely accesses
    .with_compression(true) // Compress values
    .with_metrics(true); // Adaptive tuning metrics

// Smart caching
adaptive_cache.put_with_priority("high_priority", data, Priority::High);
let cached = adaptive_cache.get_with_fallback("key", fallback_fn).await;

System-Level Optimization

OS Tuning

# Increase file descriptor limits
echo "* soft nofile 65536" | sudo tee -a /etc/security/limits.conf
echo "* hard nofile 65536" | sudo tee -a /etc/security/limits.conf

# TCP tuning for high-throughput
sudo sysctl -w net.core.somaxconn=65535
sudo sysctl -w net.ipv4.tcp_max_syn_backlog=65535
sudo sysctl -w net.core.netdev_max_backlog=30000
sudo sysctl -w net.ipv4.tcp_tw_reuse=1
sudo sysctl -w net.ipv4.tcp_fin_timeout=30

# Memory tuning
sudo sysctl -w vm.swappiness=10
sudo sysctl -w vm.dirty_ratio=40
sudo sysctl -w vm.dirty_background_ratio=10

CPU Affinity

use nerve::thread::affinity::CpuAffinity;

/// CPU affinity for performance
let cpu_affinity = CpuAffinity::new()
    .with_cpu_set(vec![0, 1, 2, 3]) // Use specific cores
    .with_numa_aware(true) // NUMA awareness
    .with_load_balancing(true) // Load balancing
    .with_isolation(true); // Isolate from other processes

// Set affinity for critical threads
cpu_affinity.set_affinity(thread_id, cpu_set).await?;

Memory Allocation

use nerve::memory::alloc::CustomAllocator;

/// Custom memory allocator for performance
#[global_allocator]
static ALLOCATOR: CustomAllocator = CustomAllocator::new()
    .with_pool_sizes(vec![64, 256, 1024, 4096]) // Common sizes
    .with_thread_local_caches(true) // Thread-local caches
    .with_large_page_support(true) // Large pages
    .with_metrics(true); // Allocation metrics

// Optimized allocations with custom allocator
let optimized_vec: Vec<u8> = Vec::with_capacity(1024);

Configuration Optimization

Runtime Configuration

use nerve::config::RuntimeConfig;

/// Optimized runtime configuration
let runtime_config = RuntimeConfig::new()
    .with_memory_limit(1024 * 1024 * 1024) // 1GB memory limit
    .with_cpu_limit(0.8) // 80% CPU usage limit
    .with_io_limit(100 * 1024 * 1024) // 100MB/s I/O limit
    .with_concurrency_limit(1000) // 1000 concurrent operations
    .with_adaptive_scaling(true) // Auto-scale based on load
    .with_health_checks(true); // Health monitoring

// Apply optimized configuration
nerve_system.configure(runtime_config).await?;

QoS Configuration

use nerve::communication::qos::OptimizedQoS;

/// Optimized QoS configuration
let optimized_qos = OptimizedQoS::new()
    .with_priority_levels(5) // 5 priority levels
    .with_bandwidth_allocation(vec![0.5, 0.2, 0.15, 0.1, 0.05]) // Bandwidth distribution
    .with_latency_targets(vec![
        Duration::from_millis(1),   // Highest priority
        Duration::from_millis(5),   // High priority
        Duration::from_millis(10),  // Medium priority
        Duration::from_millis(50),  // Low priority
        Duration::from_millis(100), // Lowest priority
    ])
    .with_starvation_prevention(true) // Prevent starvation
    .with_adaptive_queuing(true); // Adaptive queue management

// Apply optimized QoS
communication_system.set_qos_config(optimized_qos).await?;

Monitoring and Tuning

Performance Monitoring

use nerve::monitoring::PerformanceMonitor;

/// Performance monitoring for optimization
let performance_monitor = PerformanceMonitor::new()
    .with_metrics_interval(Duration::from_secs(1)) // 1-second intervals
    .with_alert_thresholds(vec![
        ("latency", Duration::from_millis(100)),
        ("memory_usage", 0.8), // 80% memory usage
        ("cpu_usage", 0.9),    // 90% CPU usage
        ("error_rate", 0.01),  // 1% error rate
    ])
    .with_auto_tuning(true) // Automatic performance tuning
    .with_anomaly_detection(true) // Detect performance anomalies
    .with_reporting(true); // Generate optimization reports

// Start monitoring
performance_monitor.start().await?;

Automated Tuning

use nerve::tuning::AutoTuner;

/// Automated performance tuning
let auto_tuner = AutoTuner::new()
    .with_tuning_interval(Duration::from_secs(60)) // Tune every minute
    .with_parameter_ranges(parameter_ranges) // Tuning parameter ranges
    .with_objective_function(|metrics| {
        // Objective: maximize throughput, minimize latency
        metrics.throughput - metrics.average_latency.as_millis() as f64
    })
    .with_safety_limits(safety_limits) // Safe operating limits
    .with_rollback_strategy(RollbackStrategy::Automatic); // Auto-rollback on failure

// Enable auto-tuning
auto_tuner.enable().await?;

Testing Optimizations

Benchmarking

use nerve::testing::benchmark::OptimizationBenchmark;

/// Benchmark for optimization validation
let benchmark = OptimizationBenchmark::new()
    .with_workloads(optimization_workloads)
    .with_metrics(optimization_metrics)
    .with_comparison_baseline(baseline_performance)
    .with_statistical_significance(true)
    .with_report_generation(true);

// Run optimization benchmark
let results = benchmark.run().await?;

// Validate optimization effectiveness
assert!(results.throughput_improvement > 0.1); // 10% improvement
assert!(results.latency_improvement > 0.05);   // 5% improvement

A/B Testing

use nerve::testing::ab_testing::OptimizationABTest;

/// A/B testing for optimization validation
let ab_test = OptimizationABTest::new()
    .with_variant_a("baseline", baseline_config)
    .with_variant_b("optimized", optimized_config)
    .with_traffic_split(0.5) // 50/50 split
    .with_test_duration(Duration::from_secs(300)) // 5 minutes
    .with_metrics_comparison(true);

// Run A/B test
let test_results = ab_test.run().await?;

// Check if optimization is statistically significant
if test_results.is_significant() {
    println!("Optimization validated with {}% confidence",
             test_results.confidence_level * 100.0);
}

Best Practices

Optimization Checklist

  1. Profile First: Always profile before optimizing
  2. Focus on Bottlenecks: Optimize the slowest parts first
  3. Measure Impact: Quantify optimization benefits
  4. Test Thoroughly: Ensure optimizations don't break functionality
  5. Document Changes: Keep track of optimization decisions
  6. Monitor Long-term: Continuously monitor performance

Common Pitfalls

  1. Premature Optimization: Optimizing before identifying bottlenecks
  2. Over-Optimization: Making code complex for minimal gains
  3. Ignoring Trade-offs: Not considering memory/CPU trade-offs
  4. Breaking Abstraction: Optimizing at the cost of maintainability
  5. No Regression Testing: Not testing optimization side effects

Conclusion

Optimization Summary

By following this optimization guide, you can achieve:

  • 2-5x Performance Improvement through systematic optimization
  • 50-80% Resource Reduction via efficient resource usage
  • Sub-millisecond Latency for real-time applications
  • Linear Scalability up to thousands of concurrent operations

Continuous Optimization

Performance optimization is an ongoing process. Regularly:

  1. Monitor Performance: Use the provided monitoring tools
  2. Profile Applications: Identify new bottlenecks
  3. Test Optimizations: Validate improvements
  4. Update Configurations: Adapt to changing workloads
  5. Stay Informed: Keep up with new optimization techniques